3,023 research outputs found

    Spin Freezing in Geometrically Frustrated Antiferromagnets with Weak Disorder

    Full text link
    We investigate the consequences for geometrically frustrated antiferromagnets of weak disorder in the strength of exchange interactions. Taking as a model the classical Heisenberg antiferromagnet with nearest neighbour exchange on the pyrochlore lattice, we examine low-temperature behaviour. We show that random exchange generates long-range effective interactions within the extensively degenerate ground states of the clean system. Using Monte Carlo simulations, we find a spin glass transition at a temperature set by the disorder strength. Disorder of this type, which is generated by random strains in the presence of magnetoelastic coupling, may account for the spin freezing observed in many geometrically frustrated magnets.Comment: 4 pages, 5 figure

    IUE spectra of a flare in HR 5110: A flaring RS CVn or Algol system?

    Get PDF
    Ultraviolet spectra of the RS CVn type binary system HR 5110 were obtained with IUE on May 31, 1979 during a period of intense radio flaring of this star. High temperature transition region lines are present, but are not enhanced above observed quiescent strengths. The similarities of HR 5110 to the Algol system, As Eri, suggest that the 1979 May to June flare may involve mass exchange rather than annihilation of coronal magnetic fields

    Mapping the B,T phase diagram of frustrated metamagnet CuFeO2

    Get PDF
    The magnetic phase diagram of CuFeO2 as a function of applied magnetic field and temperature is thoroughly explored and expanded, both for magnetic fields applied parallel and perpendicular to the material's c-axis. Pulsed field magnetization measurements extend the typical magnetic staircase of CuFeO2 at various temperatures, demonstrating the persistence of the recently discovered high field metamagnetic transition up to Tn2 ~ 11 K in both field configurations. An extension of the previously introduced phenomenological spin model used to describe the high field magnetization process (Phys. Rev. B, 80, 012406 (2009)) is applied to each of the consecutive low-field commensurate spin structures, yielding a semi-quantitative simulation and intuitive description of the entire experimental magnetization process in both relevant field directions with a single set of parameters.Comment: 14 pages, 11 figures, submitted to Phys. Rev.

    Low Velocity Granular Drag in Reduced Gravity

    Full text link
    We probe the dependence of the low velocity drag force in granular materials on the effective gravitational acceleration (geff) through studies of spherical granular materials saturated within fluids of varying density. We vary geff by a factor of 20, and we find that the granular drag is proportional to geff, i.e., that the granular drag follows the expected relation Fprobe = {\eta} {\rho}grain geff dprobe hprobe^2 for the drag force, Fprobe on a vertical cylinder with depth of insertion, hprobe, diameter dprobe, moving through grains of density {\rho}grain, and where {\eta} is a dimensionless constant. This dimensionless constant shows no systematic variation over four orders of magnitude in effective grain weight, demonstrating that the relation holds over that entire range to within the precision of our data

    Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice

    Get PDF
    We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distribution of spin relaxation times remains extremely narrow down to the lowest temperatures. Furthermore, the characteristic spin relaxation time increases faster than exponentially down to the lowest temperatures studied. These results indicate that spin-freezing in spin ice materials represents a novel form of magnetic glassiness associated with the unusual nature of geometrical frustration in these materials.Comment: 24 pages, 8 figure

    Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin-Ice

    Get PDF
    We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the a.c. magnetic susceptibility. While the characteristic spin relaxation time is thermally activated at high temperatures, it becomes almost temperature independent below Tcross ~ 13 K, suggesting that quantum tunneling dominates the relaxation process below that temperature. As the low-entropy spin ice state develops below Tice ~ 4 K, the spin relaxation time increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become highly correlated

    Quantum Mechanics, Common Sense and the Black Hole Information Paradox

    Full text link
    The purpose of this paper is to analyse, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR correlations, copying machines, teleportation, mixing produced in sub-systems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black-hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black-hole evaporation through non-local processes, or those in which the world is polluted by an infinite number of meta-stable remnants.Comment: 15 pages, Latex, CERN-TH.6889/9

    Evidence for a Self-Bound Liquid State and the Commensurate-Incommensurate Coexistence in 2D 3^3He on Graphite

    Full text link
    We made heat-capacity measurements of two dimensional (2D) 3^3He adsorbed on graphite preplated with monolayer 4^4He in a wide temperature range (0.1 T\leq T \leq 80 mK) at densities higher than that for the 4/7 phase (= 6.8 nm2^{-2}). In the density range of 6.8 ρ\leq \rho \leq 8.1 nm2^{-2}, the 4/7 phase is stable against additional 3^3He atoms up to 20% and they are promoted into the third layer. We found evidence that such promoted atoms form a self-bound 2D Fermi liquid with an approximate density of 1 nm2^{-2} from the measured density dependence of the γ\gamma-coefficient of heat capacity. We also show evidence for the first-order transition between the commensurate 4/7 phase and the ferromagnetic incommensurate phase in the second layer in the density range of 8.1 ρ\leq \rho \leq 9.5 nm2^{-2}.Comment: 6 pages, 4 figure

    Steady state evaluation of distributed secondary frequency control strategies for microgrids in the presence of clock drifts

    Get PDF
    Secondary frequency control, i.e., the task of restoring the network frequency to its nominal value following a disturbance, is an important control objective in microgrids. In the present paper, we compare distributed secondary control strategies with regard to their behaviour under the explicit consideration of clock drifts. In particular we show that, if not considered in the tuning procedure, the presence of clock drifts may impair an accurate frequency restoration and power sharing. As a consequence, we derive tuning criteria such that zero steady state frequency deviation and power sharing is achieved even in the presence of clock drifts. Furthermore, the effects of clock drifts of the individual inverters on the different control strategies are discussed analytically and in a numerical case study
    corecore